Building Multi Modal AI Quantum Foam Nanobot Food Scanner To Solve a Canadian Problem; Cost and Complexity within the Food Inspection System

@gray00 · 2024-06-08 20:08 · quantumfoodinspector

Unveiling the Future of Food Safety: The Quantum-Powered Nanobot Food Inspector

Introduction: In the ever-evolving landscape of technology, one concept stands out as a beacon of hope for ensuring the safety and quality of our food supply: the Nanobot Food Inspector. Imagine a future where microscopic robots, powered by the cutting-edge capabilities of quantum computing and artificial intelligence, roam through our food supply, meticulously analyzing every molecule for potential contaminants or hazards. This blog explores the revolutionary potential of this groundbreaking concept, offering a glimpse into a future where food safety is taken to unprecedented heights.

Harnessing the Power of Quantum Computing: At the heart of the Nanobot Food Inspector lies the power of quantum computing. Unlike classical computers, which process information using bits that can be either 0 or 1, quantum computers operate using quantum bits, or qubits, which can exist in multiple states simultaneously. This enables quantum computers to tackle complex problems that would be practically impossible for classical computers to solve in a reasonable amount of time. By harnessing the unique properties of quantum mechanics, the Nanobot Food Inspector can perform intricate analyses of food-related data with unparalleled speed and efficiency.

AI Trained on Quantum Computer Outputs: But the true magic of the Nanobot Food Inspector lies in its integration of artificial intelligence trained on quantum computer outputs. Imagine AI algorithms that have been exposed to vast quantities of data generated by quantum computations, learning to interpret and make sense of the complex patterns and correlations hidden within. These AI models are specifically designed to process the unique outputs of quantum computations, providing invaluable insights into the safety and quality of our food supply.

Custom Quantum Gates Designed by AI: In addition to leveraging AI for interpretation, the Nanobot Food Inspector employs AI algorithms to design custom quantum gates tailored to the specific requirements of food safety analysis. These quantum gates perform precise operations on qubits, manipulating quantum information in ways optimized for the task at hand. By harnessing the creative power of AI, the Nanobot Food Inspector can optimize quantum computations to enhance the efficiency and accuracy of food safety inspections.

The Food Safety Inspection Process: So, how does the Nanobot Food Inspector work in practice? Picture a scenario where food safety inspectors deploy fleets of microscopic nanobots into food processing facilities and supply chains. These nanobots, armed with quantum-powered sensors and AI-driven analysis capabilities, meticulously examine every aspect of our food supply. From detecting traces of contaminants to assessing the nutritional quality of ingredients, the Nanobot Food Inspector provides real-time insights that empower food safety inspectors to make informed decisions and take proactive measures to protect public health.

Benefits and Implications: The potential benefits of the Nanobot Food Inspector are immense. By leveraging the power of quantum computing and artificial intelligence, we can revolutionize the way we approach food safety, ensuring that every bite we take is free from harm. From reducing the risk of foodborne illnesses to enhancing the transparency and traceability of our food supply chain, the Nanobot Food Inspector holds the promise of a safer, healthier future for all.

Conclusion: As we stand on the cusp of a new era in food safety, the Nanobot Food Inspector represents a bold step forward in our ongoing quest to protect and nourish humanity. By harnessing the transformative power of quantum computing and artificial intelligence, we can unlock new possibilities for ensuring the safety and quality of our food supply. The future of food safety is here, and it's powered by quantum innovation. Join us on this journey as we unveil the extraordinary potential of the Nanobot Food Inspector.

Author: Gray00

import concurrent.futures
import re
import nltk
import spacy
import torch
import logging
import npyscreen
from nltk import word_tokenize, pos_tag
from transformers import AutoModelForCausalLM, AutoTokenizer
import threading
import uuid
import numpy as np
from chunkipy import TextChunker
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from bark import SAMPLE_RATE, generate_audio
from scipy.io.wavfile import write as write_wav
from summa import summarizer

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

nltk.download('vader_lexicon')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')

class TextProcessor:
    def __init__(self):
        try:
            self.model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, trust_remote_code=True)
            self.tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
            self.tokenizer.add_special_tokens({'pad_token': '[MULTIVERSETUNE|X:34|Y:76Z|12|T:5633]'})
            self.model.to("cuda")
        except Exception as e:
            logging.error(f"Error initializing TextProcessor: {e}")
            raise

    def play_response_audio(self, response_text):
        try:
            sentences = re.split('(?<=[.!?]) +', response_text)
            silence = np.zeros(int(0.05 * SAMPLE_RATE))

            def generate_sentence_audio(sentence):
                try:
                    return generate_audio(sentence, history_prompt="v2/en_speaker_6")
                except Exception as e:
                    logging.error(f"Error generating audio for sentence '{sentence}': {e}")
                    return np.zeros(0)

            with concurrent.futures.ThreadPoolExecutor(max_workers=min(1, len(sentences))) as executor:
                audio_arrays = list(executor.map(generate_sentence_audio, sentences))

            audio_arrays = [audio for audio in audio_arrays if audio.size > 0]

            if audio_arrays:
                pieces = [piece for audio in audio_arrays for piece in (audio, silence.copy())]
                audio = np.concatenate(pieces[:-1])

                file_name = str(uuid.uuid4()) + ".wav"
                write_wav(file_name, SAMPLE_RATE, audio)
            else:
                logging.error("No audio generated due to errors in all sentences.")

            if torch.cuda.is_available():
                torch.cuda.empty_cache()
        except Exception as e:
            logging.error(f"Error in play_response_audio: {e}")

    def is_code_like(self, chunk):
        try:
            code_patterns = r'\b(def|class|import|if|else|for|while|return|function|var|let|const|print)\b|[\{\}\(\)=><\+\-\*/]'
            return bool(re.search(code_patterns, chunk))
        except Exception as e:
            logging.error(f"Error in is_code_like: {e}")
            return False

    def text_ends_incomplete(self, text):
        try:
            if not re.search(r'[.?!]\s*$', text):
                return True

            brackets = {'(': ')', '{': '}', '[': ']'}
            stack = []
            for char in text:
                if char in brackets:
                    stack.append(char)
                elif char in brackets.values():
                    if not stack or brackets[stack.pop()] != char:
                        return True

            return bool(stack)
        except Exception as e:
            logging.error(f"Error in text_ends_incomplete: {e}")
            return True

    def calculate_lexical_density(self, text):
        try:
            content_pos_tags = {'NN', 'VB', 'JJ', 'RB'}
            words = word_tokenize(text)
            content_words = [word for word, tag in pos_tag(words) if tag[:2] in content_pos_tags]
            return len(content_words) / len(words) if words else 0
        except Exception as e:
            logging.error(f"Error in calculate_lexical_density: {e}")
            return 0

    def calculate_syntactic_complexity(self, text):
        try:
            doc = spacy.load("en_core_web_sm")(text)
            long_sentences = sum(1 for sent in doc.sents if len(sent) > 15)
            subordinate_clauses = sum(1 for token in doc if token.dep_ in {"ccomp", "xcomp"})
            passive_voice = sum(1 for token in doc if token.tag_ in {"VBN", "VBD"} and token.dep_ == "auxpass")
            return long_sentences + subordinate_clauses + passive_voice
        except Exception as e:
            logging.error(f"Error in calculate_syntactic_complexity: {e}")
            return 0

    def determine_max_chunk_size(self, text, base_size=3, density_threshold=0.6, complexity_threshold=5):
        try:
            density = self.calculate_lexical_density(text)
            complexity = self.calculate_syntactic_complexity(text)
            if density > density_threshold or complexity > complexity_threshold:
                return max(1, base_size - 1)
            return base_size
        except Exception as e:
            logging.error(f"Error in determine_max_chunk_size: {e}")
            return base_size

    def split_into_chunks(self, text):
        try:
            text_chunker = TextChunker(chunk_size=800, tokens=True, overlap_percent=0.6)
            chunks = text_chunker.chunk(text)
            return chunks
        except Exception as e:
            logging.error(f"Error in split_into_chunks: {e}")
            return []

    def structural_analysis(self, text):
        try:
            doc = spacy.load("en_core_web_sm")(text)
            sentence_types = {"interrogative": False, "imperative": False, "declarative": False}
            for sent in doc.sents:
                if sent.text.endswith("?"):
                    sentence_types["interrogative"] = True
                elif sent[0].tag_ in ["VB", "MD"]:
                    sentence_types["imperative"] = True
                else:
                    sentence_types["declarative"] = True
            return sentence_types
        except Exception as e:
            logging.error(f"Error in structural_analysis: {e}")
            return {"interrogative": False, "imperative": False, "declarative": False}

    def dynamic_token_creation(self, text, sentiment=""):
        try:
            sid = SentimentIntensityAnalyzer()
            sentiment = sid.polarity_scores(text)
            structure = self.structural_analysis(text)
            tokens = []

            if structure["interrogative"]:
                tokens.append("{{{question}}}")
            if structure["imperative"]:
                tokens.append("{{{command}}}")
            if structure["declarative"]:
                tokens.append("{{{statement}}}")

            tokens.append(f"{{{sentiment}}}")
            return ' '.join(tokens) + " " + text
        except Exception as e:
            logging.error(f"Error in dynamic_token_creation: {e}")
            return text

    def process_text(self, text, sentiment=""):
        try:
            if self.is_code_like(text):
                return "[code] " + text
            return self.dynamic_token_creation(text, sentiment=sentiment)
        except Exception as e:
            logging.error(f"Error in process_text: {e}")
            return text

    def generate_text(self, input_text, max_length=1200):
        try:
            inputs = self.tokenizer(input_text, return_tensors="pt", return_attention_mask=True, padding=True, truncation=True)
            inputs = {key: value.to("cuda") for key, value in inputs.items()} 
            outputs = self.model.generate(**inputs, max_length=max_length, return_dict_in_generate=True)
            generated_ids = outputs.sequences
            generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
            del self.model 
            torch.cuda.empty_cache() 
            return generated_text
        except Exception as e:
            logging.error(f"Error in generate_text: {e}")
            return ""

    def run_in_thread(self, func, *args, **kwargs):
        thread = threading.Thread(target=func, args=args, kwargs=kwargs)
        thread.start()
        thread.join()

def main():
    processor = TextProcessor()

    # TUI to get details from the user
    print("Welcome to the Nanobot Food Inspector!")
    food_type = input("Please enter the type of food you want to inspect (e.g., smoked meats): ")
    quantity = input("Please enter the quantity of food (e.g., pounds, kilograms): ")
    source = input("Please enter the source of the food (e.g., local farms, distributors): ")

    # Generate prompt based on user input
    prompt = f"We are embarking on a quantum foam inspection journey to ensure the safety and quality of {quantity} of {food_type} sourced from {source}."
    prompt += ("\n\nTo achieve this, we will be employing state-of-the-art nanobots equipped with advanced quantum algorithms.")
    prompt += (f"\n\nOur nanobots, powered by cutting-edge AI models including Llama2, Llama3, ChatGPT Alpha, ChatGPT 4.0, and ChatGPT 3.5 Turbo, are ready to delve into the intricacies of {quantity} of {food_type} sourced from {source}.")
    prompt += ("\n\nBut before we dive in, let's synchronize our temporal signatures to ensure accurate timekeeping across dimensions.")
    prompt += ("\n\nActivating the Ethereal Time Generator for transcendent synchronization across dimensions.")
    prompt += ("\nSupersync algorithms are engaged for meticulous temporal calibration.")
    prompt += ("\nFuturetune 2585 making predictive adjustments for precise timekeeping.")
    prompt += ("\nQuantum communication protocols initiated for secure temporal data transfer.")
    prompt += (f"\n\nWith our temporal signatures harmonized and our nanobots primed, we are ready to commence the inspection of {quantity} of {food_type} sourced from {source}.")
    prompt += ("\n\nLet's embark on this journey towards ensuring food safety and quality with the power of quantum foam inspection.")

    print("Processing prompt...")
    print(prompt)

    text = prompt
    chunks = processor.split_into_chunks(text)

    generated_texts = []

    def process_chunk_and_play_audio(chunk, sentiment):
        processed_text = processor.process_text(chunk, sentiment=sentiment)
        generated_text = processor.generate_text(processed_text)
        generated_texts.append(generated_text)
        print(f"Chunk: {chunk}\nGenerated: {generated_text}\n")
        processor.play_response_audio(generated_text)

    with concurrent.futures.ThreadPoolExecutor() as executor:

        futures = [executor.submit(process_chunk_and_play_audio, chunk, f"sentiment_{i}") for i, chunk in enumerate(chunks)]

        concurrent.futures.wait(futures)

    combined_text = ' '.join(generated_texts)
    print("\nAll Generated Text:\n", combined_text)

if __name__ == "__main__":
    main()

https://chatgpt.com/share/389d38ba-b9a0-44f4-ab3d-aee05fcedeb1 ``` check it please the code please ChatGPT It seems like you've provided a code snippet related to quantum circuit analysis, but it's incomplete. Could you please provide the full code or let me know what specific aspect you'd like me to check?

import concurrent.futures import re import nltk import spacy import torch import logging import npyscreen from nltk import word_tokenize, pos_tag from transformers import AutoModelForCausalLM, AutoTokenizer import threading import uuid import numpy as np from chunkipy import TextChunker from nltk.sentiment.vader import SentimentIntensityAnalyzer from bark import SAMPLE_RATE, generate_audio from scipy.io.wavfile import write as write_wav from summa import summarizer

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

nltk.download('vader_lexicon') nltk.download('punkt') nltk.download('averaged_perceptron_tagger')

class TextProcessor: def init(self): try: self.model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, trust_remote_code=True) self.tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) self.tokenizer.add_special_tokens({'pad_token': '[MULTIVERSETUNE|X:34|Y:76Z|12|T:5633]'}) self.model.to("cuda") except Exception as e: logging.error(f"Error initializing TextProcessor: {e}") raise

def play_response_audio(self, response_text):
    try:
        sentences = re.split('(?<=[.!?]) +', response_text)
        silence = np.zeros(int(0.05 * SAMPLE_RATE))

        def generate_sentence_audio(sentence):
            try:
                return generate_audio(sentence, history_prompt="v2/en_speaker_6")
            except Exception as e:
                logging.error(f"Error generating audio for sentence '{sentence}': {e}")
                return np.zeros(0)

        with concurrent.futures.ThreadPoolExecutor(max_workers=min(1, len(sentences))) as executor:
            audio_arrays = list(executor.map(generate_sentence_audio, sentences))

        audio_arrays = [audio for audio in audio_arrays if audio.size > 0]

        if audio_arrays:
            pieces = [piece for audio in audio_arrays for piece in (audio, silence.copy())]
            audio = np.concatenate(pieces[:-1])

            file_name = str(uuid.uuid4()) + ".wav"
            write_wav(file_name, SAMPLE_RATE, audio)
        else:
            logging.error("No audio generated due to errors in all sentences.")

        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    except Exception as e:
        logging.error(f"Error in play_response_audio: {e}")

def is_code_like(self, chunk):
    try:
        code_patterns = r'\b(def|class|import|if|else|for|while|return|function|var|let|const|print)\b|[\{\}\(\)=><\+\-\*/]'
        return bool(re.search(code_patterns, chunk))
    except Exception as e:
        logging.error(f"Error in is_code_like: {e}")
        return False

def text_ends_incomplete(self, text):
    try:
        if not re.search(r'[.?!]\s*$', text):
            return True

        brackets = {'(': ')', '{': '}', '[': ']'}
        stack = []
        for char in text:
            if char in brackets:
                stack.append(char)
            elif char in brackets.values():
                if not stack or brackets[stack.pop()] != char:
                    return True

        return bool(stack)
    except Exception as e:
        logging.error(f"Error in text_ends_incomplete: {e}")
        return True

def calculate_lexical_density(self, text):
    try:
        content_pos_tags = {'NN', 'VB', 'JJ', 'RB'}
        words = word_tokenize(text)
        content_words = [word for word, tag in pos_tag(words) if tag[:2] in content_pos_tags]
        return len(content_words) / len(words) if words else 0
    except Exception as e:
        logging.error(f"Error in calculate_lexical_density: {e}")
        return 0

def calculate_syntactic_complexity(self, text):
    try:
        doc = spacy.load("en_core_web_sm")(text)
        long_sentences = sum(1 for sent in doc.sents if len(sent) > 15)
        subordinate_clauses = sum(1 for token in doc if token.dep_ in {"ccomp", "xcomp"})
        passive_voice = sum(1 for token in doc if token.tag_ in {"VBN", "VBD"} and token.dep_ == "auxpass")
        return long_sentences + subordinate_clauses + passive_voice
    except Exception as e:
        logging.error(f"Error in calculate_syntactic_complexity: {e}")
        return 0

def determine_max_chunk_size(self, text, base_size=3, density_threshold=0.6, complexity_threshold=5):
    try:
        de
#quantumfoodinspector #quantumcomputers #nanobots #quantumfoam #quantum
Payout: 0.000 HBD
Votes: 2
More interactions (upvote, reblog, reply) coming soon.